The mechanically based non-local elasticity: an overview of main results and future challenges.
نویسندگان
چکیده
The mechanically based non-local elasticity has been used, recently, in wider and wider engineering applications involving small-size devices and/or materials with marked microstructures. The key feature of the model involves the presence of non-local effects as additional body forces acting on material masses and depending on their relative displacements. An overview of the main results of the theory is reported in this paper.
منابع مشابه
A Non-linear Static Equivalent Model for Multi-layer Annular/Circular Graphene Sheet Based on Non-local Elasticity Theory Considering Third Order Shear Deformation Theory in Thermal Environment
In this paper, it is tried to find an approximate single layer equivalent for multi-layer graphene sheets based on third order non-local elasticity theory. The plates are embedded in two parameter Winkler-Pasternak elastic foundation, and also the thermal effects are considered. A uniform transverse load is imposed on the plates. Applying the non-local theory of Eringen based on third order she...
متن کاملMechanical Response of a Piezoelectrically Sandwiched Nano-Beam Based on the Non-Local Theory
This article deals with the mechanical analysis of a fixed-fixed nano-beam based on nonlocal elasticity theory. The nano-beam is sandwiched with two piezoelectric layers through it’s upper and lower sides. The electromechanical coupled equations governing the problem are derived based nonlocal theory considering to Euler-Bernoulli beam assumptions and based on the nonlocal piezoelectricity acco...
متن کاملNonlinear Buckling of Circular Nano Plates on Elastic Foundation
The following article investigates nonlinear symmetric buckling of moderately thick circular Nano plates with an orthotropic property under uniform radial compressive in-plane mechanical load. Taking into account Eringen nonlocal elasticity theory, principle of virtual work, first order shear deformation plate theory (FSDT) and nonlinear Von-Karman strains, the governing equations are obtained ...
متن کاملFinite difference method for sixth-order derivatives of differential equations in buckling of nanoplates due to coupled surface energy and non-local elasticity theories
In this article, finite difference method (FDM) is used to solve sixth-order derivatives of differential equations in buckling analysis of nanoplates due to coupled surface energy and non-local elasticity theories. The uniform temperature change is used to study thermal effect. The small scale and surface energy effects are added into the governing equations using Eringen’s non-local elasticity...
متن کاملFinite difference method for sixth-order derivatives of differential equations in buckling of nanoplates due to coupled surface energy and non-local elasticity theories
In this article, finite difference method (FDM) is used to solve sixth-order derivatives of differential equations in buckling analysis of nanoplates due to coupled surface energy and non-local elasticity theories. The uniform temperature change is used to study thermal effect. The small scale and surface energy effects are added into the governing equations using Eringen’s non-local elasticity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 371 1993 شماره
صفحات -
تاریخ انتشار 2013